Berikutsaya bagikan kumpulan soal SBMPTN 2013, lumayan buat latian dan itu perlu mengingat soal-soal setingkat ujian masuk perguruan tinggi berbeda dengan soal UN modelnya. Teori atau materi pelajarannya sih sama cuman kalo di ujian masuk perguruan tinggi lebih menekankan pada pemecahan masalah dengan mengandalkan pemahaman konsep dasar, tidak Darisini, kita dapat merumuskan persamaan lingkaran dengan P(a,b) sebagai titik pusat dan r sebagai jari-jari. √(x - a) 2 + (y - b) 2 = r (x - a) 2 + (y - b) 2 = r 2. Mari kita kerjakan contoh soal di bawah ini. Tentukan persamaan lingkaran yang pusatnya berada pada titik (-5,4) yang panjang jari-jarinya adalah 7! persamaangaris singgung terhadap lingkaran L melalui titik (2, 1) adalah: x1.x + y1.y + a (x1 + x) + b (y1 + y) + c = 0. x1.x + y1.y - Β½ . 6 (x1 + x) - Β½ . 2 (y1 + y) + 9 = 0. 2.x + 1.y - 3 (2 + x) - 1 (1 + y) + 9 = 0. 2x + y - 6 - 3x - 1 - y + 9 = 0. -x + 2 = 0. x = 2. SimulasiSoal Sbmptn 2019 Diagram Lingkaran Dan Contoh Soalnya Contoh Soal Dan Pembahasan Tentang Diagram Lingkaran Dan kelas 5 contoh soal penjumlahan pecahan campuran kelas 5 sd contoh soal perpangkatan dan bentuk akar kelas 9 contoh soal persamaan dasar akuntansi contoh soal persamaan dasar akuntansi 25 transaksi contoh soal Materisoal dan kunci jawaban penalaran analisis juli 10 2020. Conroh soal polinomial materi makalah pembahasan kali ini mengenai conth soal polinomial beserta pengertian. soal dan pembahasan persamaan garis singgung lingkaran | istana … Suatu fungsi kuadrat diketahui f1 f3 0 dan nilai minimum 1. Untukinformasi terbaru mengenai UTBK SBMPTN 2022 bisa kamu dapatkan di situs web resmi Lembaga Tes Masuk Perguruan Tinggi (LTMPT): Berikut adalah link download kumpulan soal dan pembahasan tps utbk sbmptn 2021/2022 pdf. Catatan: Bank soal ini ini akan selalu kami update. Silahkan kunjungi kembali blog ini untuk mendapatkan JzbGKa. Postingan ini membahas contoh soal persamaan lingkaran dan penyelesaiannya atau pembahasannya. Persamaan lingkaran merupakan salah satu pelajaran matematika SMA kelas 11 semester pertama. Rumus persamaan lingkaran sebagai berikutBentuk umum persamaan lingkaran x2 + y2 + 2ax + 2by + c = 0 Persamaan lingkaran berpusat di O0,0 x2 + y2 = r2 Persamaan lingkaran berpusat di a,b x – a2 + y – b2 = r2 jari-jari r = √a2 + b2 – c Untuk lebih jelasnya, perhatikan contoh soal persamaan lingkaran dan penyelesaian dibawah soal 1Tentukan pusat dan jari-jari lingkaran yang memiliki persamaan x2 + y2 + 6x – 2y – 65 = soal / pembahasanPada soal ini diketahui2a = 6 atau a = 6/2 = 32b = -2 atau b = -2/2 = -1c = – 65Pusat lingkaran = -a , -b = -3 , – -1 = -3 , 1 Jari-jari r = √a2 + b2 – c Jari-jari = √32 + -12 – -65 jari-jari r = √ 75 = 5 √ 3 Contoh soal 2Tentukan persamaan lingkaran dititik pusat 4 , 3 dan melalui titik 0 , 0.Penyelesaian soal / pembahasanPada soal ini diketahuia = 4b = 3x = 0y = 0Tentukan terlebih dahulu r2 lingkaran dengan menggunakan persamaan sebagai berikut x – a2 + x – b2 = r2 0 – 42 + 0 – 32 = r2 16 + 9 = r2 r2 = 25 Jadi persamaan lingkaran sebagai berikut x – 42 + y – 32 = 25Contoh soal 3Tentukan persamaan lingkaran yang berpusat di -6 , 3 dan menyinggung sumbu soal / pembahasanLingkaran yang menyinggung sumbu x berarti jari-jarinya sepanjang titik pusat y atau r = 3. Jadi persamaan lingkaran x – -62 + y – 32 = 32 atau x + 62 + y – 32 = soal 4Tentukan persamaan lingkaran yang berpusat di -2 , 5 dan menyinggung sumbu soal / pembahasanLingkaran yang menyinggung sumbu y berarti jari-jarinya sepanjang titik pusat x atau r = 2. Jadi persamaan lingkaran x + 22 + y – 52 = 22 atau x + 22 + y – 52 = soal 5Tentukan persamaan lingkaran yang berpusat di -4 , 3 dan menyinggung garis 3x – 2y – 2 = soal / pembahasanHitung jari-jari lingkaran dengan rumus sebagai berikut r = persamaan garis√a2 + b2 r = 3 . -4 – 2 . 3 – 2√-42 + 32 = -205 = -4 = 4 Jadi persamaan lingkaran sebagai berikut x + 42 + y – 32 = 42 atau x + 42 + y – 32 = 16Contoh soal 6 UN 2017Persamaan lingkaran dengan pusat dititik 2 , -3 dan menyinggung garis x = 5 adalah…A. x2 + y2 + 4x – 6y + 9 = 0 B. x2 + y2 -4x + 6y + 9 = 0 C. x2 + y2 – 4x + 6y + 4 = 0 D. x2 + y2 – 4x – 6y + 9 = 0 E. x2 + y2 + 4x – 6y + 4 = 0Penyelesaian soal / pembahasanJari -jari lingkaran pada soal ini r = 5 – 2 = 3 Persamaan lingkaran x – a2 + y – b2 = r2 x – 22 + y + 32 = 32 x2 – 4x + 4 + y2 + 6y + 9 = 9 x2 + y2 – 4x + 6y + 4 = 0Soal ini jawabannya soal 7 UN 2018Persamaan lingkaran yang berpusat dititik -2 , 5 dan melalui titik 3 , -7 adalah…A. x2 + y2 + 4x – 10y – 140 = 0 B. x2 + y2 – 4x – 10y – 140 = 0 C. x2 + y2 + 4x – 10y – 198 = 0 D. x2 + y2 + 10x – 4y – 140 = 0 E. x2 + y2 + 10x – 4y – 198 = 0Penyelesaian soal / pembahasanCara menjawab soal ini sebagai berikutHitung r2 dengan rumus dibawah ini r2 = 3 – -22 + -7 – 52 = 25 + 144 = 169 Persamaan lingkaran x – a2 + y – b2 = r2 x – -22 + x – 52 = 169 x + 22 + y – 52 = 169 x2 + 4x + 4 + y2 – 10y + 25 – 169 = 0 x2 + y2 + 4x + 10y – 140 = 0Soal ini jawabannya soal 9 UN 2018Persamaan lingkaran yang berpusat di P3 , 2 dan melalui titik 7 , 5 adalah…A. x2 + y2 – 4y – 54 = 0 B. x2 + y2 – 6x – 32 = 0 C. x2 + y2 – 6x + 4y – 12 = 0 D. x2 + y2 – 6x – 4y – 12 = 0 E. x2 + y2 + 6x – 4y – 54 = 0Penyelesaian soal / pembahasanr2 = 7 – 32 + 5 – 22 = 16 + 9 = 25 Persamaan lingkaran x – 32 + y – 22 = 25 x2 – 6x + 9 + y2 – 4y + 4 – 25 = 0 x2 + y2 -6x – 4y – 12 = 0Soal ini jawabannya soal 10 UN 2016Salah satu persamaan garis singgung lingkaran x2 + y2 – 2x + 6y – 10 = 0 yang sejajar dengan garis 2x -y + 4 = 0 adalah …A. 2x – y = 14 B. 2x – y = 10 C. 2x – y = 5 D. 2x – y = -5 E. 2x – y = -6Penyelesaian soal / pembahasanPada soal ini diketahui2a = -2 atau a = -12b = 6 atau b = 3c = – 10Cara menjawab soal ini sebagai berikutGradien garis 2x – y = 4 adalah m = 2. Karena sejajar maka gradien garis singgung lingkaran sama dengan m = 2 dengan persamaan sebagai berikut y + b = m x + a Β± √1 + m2 a2 + b2 – c y + 3 = 2 x – 1 Β± √1 + 22 -12 + 32 – -10 y + 3 = 2x – 2 Β± √100 y + 3 = 2x -2 + 10 = 2x + 8 atau 2x – y = -5 y + 3 = 2x -2 – 10 = 2x – 12 atau 2x – y = 15Jadi salah satu persamaan garis singgung lingkaran adalah 2x – y = -5. Jawaban soal ini adalah soal 11 UN 2018Salah satu persamaan garis singgung lingkaran x2 + y2 – 10x + 2y + 1 = 0 yang tegak lurus dengan garis 5x + 12y – 8 = 0 adalah…A. 5y – 12x – 130 = 0 B. 5y – 12x + 130 = 0 C. 5y + 12x + 130 = 0 D. 5x – 12y + 130 = 0 E. 5x + 12y + 130 = 0Penyelesaian soal / pembahasanPada soal ini diketahui2a = – 10 atau a = -52b = 2 atau b = 1c = 1Gradien dari garis 5x + 12y – 8 = 0 adalah m2 = – 512 . Karena tegak lurus maka berlaku persamaan m1 . m2 = – 1 atau m1 = – 1m2 = – 1– 5/12 = 125 y + b = m x + a Β± √1 + m2 a2 + b2 – c y + 1 = 12/5 x – 5 Β± √1 + 12/52 -52 + 12 – 1 y + 1 = 12/5 x – 12 Β± 13 y + 1 = 12/5x – 12 + 13 = 12/5x + 1 x 5 5y + 5 = 12x + 5 atau 5y – 12x = 0 y + 1 = 12/5 x – 12 – 13 = 12/5 x – 25 x 5 5y + 5 = 12x – 125 atau 5y – 12x + 130 = 0Soal ini jawabannya D. Soal dan Pembahasan Persamaan Lingkaran. Seperti biasa, sebelum kita masuk ke pokok persoalan kita akan melakukan review singkat tentang persamaan Persamaan LingkaranLingkaran adalah tempat kedudukan semua titik yang berjarak sama terhadap titik tertentu. Titik tertentu tersebut disebut pusat lingkaran dan jarak antara pusat lingkaran dengan semua titik yang berjarak sama disebut jari-jari lingkaran. Jika jarak tersebut dinyatakan secara matematis dalam bentuk persamaan, maka persamaan tersebut disebut persamaan Persamaan LingkaranPersamaan Lingkaran yang Berpusat di $O0,\ 0$ dan Berjari-jari $r$.$x^2 + y^2 = r^2$Persamaan Lingkaran yang Berpusat di $Pa,\ b$ dan Berjari-jari $r$.$x - a^2 + x - b^2 = r^2$Bentuk Umum Persamaan Lingkaran.$x^2 + y^2 + Ax + By + C = 0$ $\bullet$ $Pusat = -\dfrac12A,\ -\dfrac12B$ $\bullet$ $R^2 = \dfrac14A^2 + \dfrac14B^2 - C$ $R β†’ jari-jari$Kedudukan Titik Terhadap LingkaranKedudukan Titik Terhadap Lingkaran $x^2 + y^2 = r^2$ $\bullet$ Jika titik $Mx_1,\ y_1$ terletak di luar lingkaran, maka berlaku $x_1^2 + y_1^2 > r^2$ $\bullet$ Jika titik $Mx_1,\ y_1$ terletak pada lingkaran, maka berlaku $x_1^2 + y_1^2 = r^2$ $\bullet$ Jika titik $Mx_1,\ y_1$ terletak di dalam lingkaran, maka berlaku $x_1^2 + y_1^2 r^2$ $\bullet$ Jika titik $Mx_1,\ y_1$ terletak pada lingkaran, maka berlaku $x_1 - a^2 + y_1 - b^2 = r^2$ $\bullet$ Jika titik $Mx_1,\ y_1$ terletak di dalam lingkaran, maka berlaku $x_1 - a^2 + y_1 - b^2 0$. $\bullet$ Jika titik $Mx_1,\ y_1$ terletak pada lingkaran, maka berlaku $x_1^2 + y_1^2 + Ax_1 + By_1 + C = 0$. $\bullet$ Jika titik $Mx_1,\ y_1$ terletak di dalam lingkaran, maka berlaku $x_1^2 + y_1^2 + Ax_1 + By_1 + C 0$ maka garis memotong lingkaran pada dua titik yang berlainan. b. Jika $D = 0$ maka garis menyinggung lingkaran. c. Jika $D R + r$, maka lingkaran $L_1$ tidak bersinggungan dan tidak berpotongan dengan lingkaran $L_2$. 5. Jika $AB < R - r$, maka lingkaran $L_1$ dan $L_2$ tidak berpotongan dan salah satu lingkaran berada di dalam lingkaran yang lain. 6. Jika $AB = 0$ maka lingkaran $L_1$ dan $L_2$ adalah sepusat memiliki pusat yang sama. $\bullet$ Jarak antara titik $x_1,\ y_1$ dengan garis $Ax + By + C = 0$ $r = \dfrac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}}$ $\bullet$ Jarak antara titik $x_1,\ y_1$ dan titik $x_2,\ y_2$ $r^2 = x_2 - x_1^2 + y_2 - y_1^2$Soal dan Pembahasan Persamaan Lingkaran$1.$ Persamaan lingkaran dengan pusat $-1,\ 3$ dan menyinggung sumbu $y$ adalah . . . . $A.\ x^2 + y^2 - 2x + 6y + 9 = 0$ $B.\ x^2 + y^2 - 2x - 6y + 9 = 0$ $C.\ x^2 + y^2 + 2x - 6y - 9 = 0$ $D.\ x^2 + y^2 + 2x - 6y + 9 = 0$ $E.\ x^2 + y^2 + 2x - 6y + 11 = 0$ [Soal Ebtanas 1995 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Perhatikan gambar ! Panjang jari-jari lingkaran adalah $1$. Persamaan lingkaran dengan pusat $a,\ b$ dengan jari-jari $r$ $x - a^2 + y - b^2 = r^2$ $x - -1^2 + y - 3^2 = 1^2$ $x + 1^2 + y - 3^2 = 1^2$ $x^2 + 2x + 1 + y^2 - 6y + 9 = 1$ $x^2 + y^2 + 2x - 6y + 9 = 0$ jawab D. $2.$ Jari-jari lingkaran pada gambar di bawah adalah . . . . $A.\ \sqrt{3}$ $B.\ 3$ $C.\ \sqrt{13}$ $D.\ 3\sqrt{3}$ $E.\ \sqrt{37}$ [Soal Ebtanas 1996 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Misalkan persamaan lingkaran adalah $x^2 + y^2 + Ax + By + C = 0$ Substitusikan titik $A,\ B,\ dan\ C$ ke dalam persamaan lingkaran ! $5^2 + 0^2 + + + C = 0$ $5A + C = -25$ . . . . 1 $-1^2 + 0^2 - A + + C = 0$ $-A + C = -1$ . . . . 2 $0^2 + 5^2 + + + C = 0$ $5B + C = -25$ . . . . 3 Eliminasi persamaan 1 dan 2 ! $5A + C = -25$ $-A + C = -1$ - $-$ $6A = -24$ $A = -4$ $C = -5$ Dengan memasukkan nilai $C = -5$ ke pers 3, didapat nilai $B = -4$. Sehingga persamaan lingkaran menjadi $x^2 + y^2 - 4x - 4y - 5 = 0$ $\begin{align} R^2 &= \dfrac14A^2 + \dfrac14B^2 - C\\ &= \dfrac14-4^2 + \dfrac14-4^2 - -5\\ &= \ + \ + 5\\ &= 4 + 4 + 5\\ &= 13\\ R &= \sqrt{13}\\ \end{align}$ jawab C. $3.$ Persamaan garis singgung melalui titik $9,\ 0$ pada lingkaran $x^2 + y^2 = 36$ adalah . . . . $A.\ 2x + y\sqrt{5} = 18$ dan $2x - y\sqrt{5} = 18$ $B.\ 2x + y\sqrt{5} = 18$ dan $-2x - y\sqrt{5} = 18$ $C.\ 2x + y\sqrt{5} = -18$ dan $-2x - y\sqrt{5} = -18$ $D.\ x\sqrt{5} + 2y = 18$ dan $x\sqrt{5} - 2y = 18$ $E.\ x\sqrt{5} + 2y = -18$ dan $x\sqrt{5} - 2y = -18$ [Soal Ebtanas 1997 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Titik $9,\ 0$ berada di luar lingkaran. Misalkan gradien garis singgung adalah $m$, sehingga persamaan garis singgung adalah $y - 0 = mx - 9$ $y = mx - 9m$ . . . . * Substitusi pers * ke dalam pers lingkaran ! $x^2 + mx - 9m^2 = 36$ $x^2 + m^2x^2 - 18m^2x + 81m^2 - 36 = 0$ $1 + m^2x^2 - 18m^2x + 81m^2 - 36 = 0$ $D = 0$ $b^2 - 4ac = 0$ $-18m^2^2 - 41 + m^281m^2 - 36 = 0$ $324m^4 - 324m^2 - 144 + 324m^4 - 144m^2 = 0$ $180m^2 - 144 = 0$ $5m^2 = 4$ $m = \pm \dfrac{2}{\sqrt{5}}$ Persamaan garis menjadi $y = \dfrac{2}{\sqrt{5}}x - 9.\dfrac{2}{\sqrt{5}}$ $y\sqrt{5} = 2x - 18$ $2x - y\sqrt{5} = 18$ . . . . I. $y = -\dfrac{2}{\sqrt{5}}x - 9.-\dfrac{2}{\sqrt{5}}$ $y\sqrt{5} = -2x + 18$ $2x + y\sqrt{5} = 18$ . . . . II. jawab A. $4.$ Diketahui lingkaran $x^2 + y^2 - 4x + 2y + C = 0$ melalui titik $A5,\ -1$. Jari-jari lingkaran tersebut sama dengan . . . . $A.\ \sqrt{7}$ $B.\ 3$ $C.\ 4$ $D.\ 2\sqrt{6}$ $E.\ 9$ [Soal Ebtanas 1998 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Substitusikan titik $A5,\ -1$ ke dalam persamaan lingkaran ! $x^2 + y^2 - 4x + 2y + C = 0$ $5^2 + -1^2 - + 2.-1 + C = 0$ $25 + 1 - 20 - 2 + C = 0$ $C = -4$ Persamaan lingkaran menjadi $x^2 + y^2 - 4x + 2y - 4 = 0$ $\begin{align} R^2 &= \dfrac14A^2 + \dfrac14B^2 - C\\ &= \dfrac14.-4^2 + \ - -4\\ &= 4 + 1 + 4\\ &= 9\\ R &= 3\\ \end{align}$ jawab B. $5.$ Diketahui lingkaran $x^2 + y^2 + 8x + 2py + 9 = 0$ mempunyai jari-jari $4$ dan menyinggung sumbu $Y$. Pusat lingkaran tersebut sama dengan . . . . $A.\ 4,\ -6$ $B.\ -4,\ 6$ $C.\ -4,\ -6$ $D.\ -4,\ -3$ $E.\ 4,\ 3$ [Soal Ebtanas 1999 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$\begin{align} R^2 &= \dfrac14A^2 + \dfrac14B^2 - C\\ 4^2 &= \ + \dfrac14.2p^2 - 9\\ 16 &= 16 + p^2 - 9\\ p^2 &= 9\\ p &= 3\\ \end{align}$ Persamaan lingkaran menjadi $x^2 + y^2 + 8x + 6y + 9 = 0$ $\begin{align} Pusat &= \left-\dfrac12A,\ -\dfrac12B\right\\ &= \left-\ -\ &= \left-4,\ -3\right \end{align}$ jawab D. $6.$ Garis singgung lingkaran $x^2 + y^2 = 25$ di titik $-3,\ 4$ menyinggung lingkaran dengan pusat $10,\ 5$ dan jari-jari $r$. Nilai $r =$ . . . . $A.\ 3$ $B.\ 5$ $C.\ 7$ $D.\ 9$ $E.\ 11$ [Soal Ebtanas 2000 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Periksa apakah titik $-3,\ 4$ terletak pada lingkaran $-3^2 + 4^2 = 25$ $25 = 25$ Berarti titik $-3,\ 4$ terletak pada lingkaran. Persamaan garis singgung di titik $x_1,\ y_1$ yang terletak pada lingkaran dengan pusat $O0,\ 0$ $x_1x + y_1y = r^2$ $-3x + 4y = 25$ $3x - 4y + 25 = 0$ Persamaan garis $3x - 4y + 25 = 0$ merupakan garis singgung pada lingkaran dengan pusat $10,\ 5$. Jari-jari adalah jarak antara pusat lingkaran dengan garis singgung. $\begin{align} r &= \dfrac{Ax + By + C }{\sqrt{A^2 + B^2}}\\ &= \dfrac{ - + 25}{\sqrt{3^2 + 4^2}}\\ &= \dfrac{35}{5}\\ &= 7.\\ \end{align}$ jawab C. $7.$ Salah satu persamaan garis singgung dari titik $0,\ 0$ pada lingkaran $x - 3^2 + y - 4^2 - 5 = 0$ adalah . . . . $A.\ x - y = 0$ $B.\ 11x + y = 0$ $C.\ 2x + 11y = 0$ $D.\ 11x - y = 0$ $E.\ 11x - 2y = 0$ [Soal Ebtanas 2001 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Garis singgung lingkaran melalui titik $0,\ 0$, misalkan gradiennya adalah $m$, sehingga persamaan garis singgungnya adalah $y = mx$. Substitusikan persamaan garis ke dalam persamaan lingkaran ! $x - 3^2 + y - 4^2 - 5 = 0$ $x - 3^2 + mx - 4^2 - 5 = 0$ $x^2 - 6x + 9 + m^2x^2 - 8mx + 16 - 5 = 0$ $1 + m^2x^2 - 8m + 6x + 20 = 0$ $D = 0$ $b^2 - 4ac = 0$ $-8m + 6^2 - 4.1 + m^2.20 = 0$ $64m^2 + 96m + 36 - 80 - 80m^2 = 0$ $-16m^2 + 96m - 44 = 0$ $16m^2 - 96m + 44 = 0$ $4m^2 - 24m + 11 = 0$ $2m - 112m - 1 = 0$ $m = \dfrac{11}{2}\ atau\ m = \dfrac12$ Dengan demikian, persamaan garis singgung lingkaran adalah $y = mx$ $y = \dfrac{11}{2}x$ $2y = 11x$ $11x - 2y = 0$ . . . . I $y = \dfrac12x$ $2y = x$ $x - 2y = 0$ . . . . II jawab E. $8.$ Titik $a,\ b$ adalah pusat lingkaran $x^2 + y^2 - 2x + 4y + 1 = 0$. Jadi $2a + b =$ . . . . $A.\ 0$ $B.\ 2$ $C.\ 3$ $D.\ -1$ $E.\ -2$ [Soal Ebtanas 2002 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$\begin{align} Pusat &= \left-\dfrac12A,\ -\dfrac12B\right\\ &= \left-\dfrac12.-2,\ -\ &= \left1,\ -2\right\\ 2a + b &= + -2\\ &= 0\\ \end{align}$ jawab A. $9.$ Salah satu garis singgung yang bersudut $120^o$ terhadap sumbu $x$ positif pada lingkaran dengan ujung diameter titik $7,\ 6$ dan $1,\ -2$ adalah . . . . $A.\ y = -x\sqrt{3} + 4\sqrt{3} + 12$ $B.\ y = -x\sqrt{3} - 4\sqrt{3} + 8$ $C.\ y = -x\sqrt{3} + 4\sqrt{3} - 4$ $D.\ y = -x\sqrt{3} - 4\sqrt{3} - 8$ $E.\ y = -x\sqrt{3} + 4\sqrt{3} + 22$ [Soal Ebtanas 2002 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Panjang diameter dan jari-jari lingkaran $\begin{align} d^2 &= 7 - 1^2 + 6 - -2^2\\ &= 6^2 + 8^2\\ &= 100\\ d &= 10\\ r &= 5\\ \end{align}$ Pusat lingkaran $\begin{align} Pusat &= \left\dfrac127 + 1,\ \dfrac126 - 2 \right\\ &= 4,\ 2\\ \end{align}$ Gradien garis singgung lingkaran $m = tan\ 60^o = -\sqrt{3}$ Persamaan garis singgung lingkaran yang berpusat di $a,\ b$ dan jari-jari $r$ dengan gradien garis singgung $m$ $\begin{align} y - b &= mx - a \pm r\sqrt{1 + m^2}\\ y - 2 &= -\sqrt{3}x - 4 \pm 5\sqrt{1 + \sqrt{3}^2}\\ y - 2 &= -x\sqrt{3} + 4\sqrt{3} \pm 5\sqrt{4}\\ y - 2 &= -x\sqrt{3} + 4\sqrt{3} \pm 10\\ y &= -x\sqrt{3} + 4\sqrt{3} + 12 . . . . I\\ y &= -x\sqrt{3} + 4\sqrt{3} - 8 . . . . II.\\ \end{align}$ jawab A. $10.$ Persamaan garis singgung pada lingkaran $x^2 + y^2 - 2x + 4y - 4 = 0$ yang tegak lurus garis $5x - 12y + 15 = 0$ adalah . . . . $A.\ 12x + 5y - 41 = 0$ dan $12x + 5y + 37 = 0$ $B.\ 12x + 5y + 41 = 0$ dan $12x + 5y - 37 = 0$ $C.\ 5x + 12y + 41 = 0$ dan $5x + 12y + 37 = 0$ $D.\ 5x + 12y - 41 = 0$ dan $5x + 12y - 37 = 0$ $E.\ 12x - 5y - 41 = 0$ dan $12x - 5y + 37 = 0$ [Soal UAN 2004 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$5x - 12y + 15 = 0$ $m_1 = \dfrac{5}{12}$ Misalkan gradien garis singgung lingkaran adalah $m_2$ $ = -1$ $\dfrac{5}{12}.m_2 = -1$ $m_2 = -\dfrac{12}{5}$ Pusat lingkaran $Pusat = 1,\ -2$ Jari-jari lingkaran $\begin{align} R^2 &= \dfrac14A^2 + \dfrac14B^2 - C\\ &= \dfrac14.-2^2 + \ - -4\\ &= 1 + 4 + 4\\ &= 9\\ R &= 3\\ \end{align}$ Persamaan garis singgung lingkaran $y - b = mx - a \pm r\sqrt{1 + m^2}$ $y - -2 = -\dfrac{12}{5}x - 1 \pm 3\sqrt{1 + \left\dfrac{12}{5}\right^2}$ $y + 2 = -\dfrac{12}{5}x + \dfrac{12}{5} \pm 3\sqrt{\dfrac{169}{25}}$ $y + 2 = -\dfrac{12}{5}x + \dfrac{12}{5} \pm \dfrac{39}{5}$ $y + \dfrac{12}{5}x - \dfrac{2}{5} \pm \dfrac{39}{5} = 0$ $y + \dfrac{12}{5}x + \dfrac{37}{5} = 0$ $12x + 5y + 37 = 0$ . . . . I $y + \dfrac{12}{5}x - \dfrac{41}{5} = 0$ $12x + 5y - 41 = 0$ . . . . II jawab A. $11.$ Persamaan garis singgung lingkaran $x^2 + y^2 - 6x + 2y - 15 = 0$ pada titik $7,\ 2$ adalah . . . . $A.\ 2x - 7y = 0$ $B.\ 4x + 7y - 38 = 0$ $C.\ 7x + 2y - 35 = 0$ $D.\ 4x + 3y - 35 = 0$ $E.\ 4x + 3y - 34 = 0$ [Soal UN 2005 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$x^2 + y^2 - 6x + 2y - 15 = 0$ $7^2 + 2^2 - + - 15 = 0$ $49 + 4 - 42 + 4 - 15 = 0$ $0 = 0$ Berarti titik $7,\ 2$ terletak pada lingkaran. Persamaan garis singgung lingkaran pada titik $x_1,\ y_1$ yang terletak pada lingkaran $x^2 + y^2 + Ax + By + C = 0$ $x_1x + y_1y + \dfrac12Ax_1 + x + \dfrac12By_1 + y + C = 0$ $7x + 2y - \ + x + \ + y - 15 = 0$ $7x + 2y - 21 - 3x + 1 + y - 15 = 0$ $4x + 3y - 35 = 0$ jawab D. $12.$ Persamaan lingkaran yang pusatnya terletak pada garis $x - y - 2 = 0$ serta menyinggung sumbu $X$ positif dan sumbu $Y$ negatif adalah . . . . $A.\ x^2 + y^2 - x + y - 1 = 0$ $B.\ x^2 + y^2 - x - y - 1 = 0$ $C.\ x^2 + y^2 + 2x - 2y - 1 = 0$ $D.\ x^2 + y^2 - 2x + 2y - 1 = 0$ $E.\ x^2 + y^2 - 2x + 2y + 1 = 0$ [Soal UN 2006 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Perhatikan gambar ! $Pusat = 1,\ -1$ $r = 1$ Persamaan lingkaran dengan pusat $a,\ b$ dan jari-jari $r$ $x - a^2 + y - b^2 = r^2$ $x - 1^2 + y - -1^2 = 1^2$ $x - 1^2 + y + 1^2 = 1$ $x^2 - 2x + 1 + y^2 + 2y + 1 = 1$ $x^2 + y^2 - 2x + 2y + 1 = 0$ jawab E. $13.$ Persamaan garis singgung melalui titik $A-2,\ -1$ pada lingkaran $x^2 + y^2 + 12x - 6y + 13 = 0$ adalah . . . . $A.\ -2x - y - 5 = 0$ $B.\ x - y + 1 = 0$ $C.\ x + 2y + 4 = 0$ $D.\ 3x - 2y + 4 = 0$ $E.\ 2x - y + 3 = 0$ [Soal UN 2008 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$x^2 + y^2 + 12x - 6y + 13 = 0$ $-2^2 + -1^2 + 12.-2 - 6.-1 + 13 = 0$ $4 + 1 - 24 + 6 + 13 = 0$ $0 = 0$ Berarti titik $-2,\ -1$ terletak pada lingkaran. Persamaan garis singgung $x_1x + y_1y + \dfrac12Ax_1 + x + \dfrac12By_1 + y + C = 0$ $-2x + -1y + \ + x + \dfrac12.-6-1 + y + 13 = 0$ $-2x - y - 12 + 6x + 3 - 3y + 13 = 0$ $4x - 4y + 4 = 0$ $x - y + 1 = 0$ jawab B. $14.$ Lingkaran $x - 4^2 + y - 4^2 = 16$ memotong garis $y = 4$. Garis singgung lingkaran yang melalui titik potong lingkaran dan garis tersebut adalah . . . . $A.\ y = 8 - x$ $B.\ y = 0$ dan $y = 8$ $C.\ x = 0$ dan $x = 8$ $D.\ y = x + 8$ dan $y = x - 8$ $E.\ y = x - 8$ dan $y = 8 - x$ [Soal UN 2009 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Titik potong garis dengan lingkaran $x - 4^2 + 4 - 4^2 = 16$ $x - 4^2 = 16$ $x - 4 = \pm 4$ $x = \pm 4 + 4$ $x = 0\ atau\ x = 8$ Titik potong/titik singgung lingaran $0,\ 4\ dan 8,\ 4$ Persamaan garis singgung lingkaran pada titik $0,\ 4$ $x_1 - ax - a + y_1 - by - b = r^2$ $0 - 4x - 4 + 4 - 4y - 4 = 16$ $-4x + 16 = 16$ $x = 0$ Persamaan garis singgung lingkaran pada titik $8,\ 4$ $8 - 4x - 4 + 4 - 4y - 4 = 16$ $4x - 16 = 16$ $4x = 32$ $x = 8$ jawab C. $15.$ Salah satu persamaan garis singgung lingkaran $x - 4^2 + y - 5^2 = 8$ yang sejajar dengan $y - 7x + 5 = 0$ adalah . . . . $A.\ y - 7x - 13 = 0$ $B.\ y + 7x + 3 = 0$ $C.\ -y - 7x + 3 = 0$ $D.\ -y + 7x + 3 = 0$ $E.\ y - 7x + 3 = 0$ [Soal UN 2010 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Karena garis singgung sejajar dengan garis $y - 7x + 5 = 0$, maka gradien garis singgung lingkaran sama dengan gradien garis $y - 7x + 5 = 0$. $m = 7$ $Pusat\ lingkaran = 4,\ 5$ $r = \sqrt{8}$ Persamaan garis singgung $y - b = mx - a \pm r\sqrt{1 + m^2}$ $y - 5 = 7x - 4 \pm \sqrt{8}\sqrt{1 + 7^2}$ $y - 5 = 7x - 4 \pm \sqrt{8}\sqrt{50}$ $y - 5 = 7x - 28 \pm 20$ $y - 7x + 23 \pm 20 = 0$ $y - 7x + 43 = 0$ . . . . I $y - 7x + 3 = 0$ . . . . II jawab E. $16.$ Lingkaran $L = x + 1^2 + y - 3^2 = 9$ memotong garis $y = 3$. Garis singgung lingkaran yang melalui titik potong antara lingkaran dan garis tersebut adalah . . . . $A.\ x = 2\ dan\ x = -4$ $B.\ x = 2\ dan\ x = -2$ $C.\ x = -2\ dan\ x = 4$ $D.\ x = -2\ dan\ x = -4$ $E.\ x = 8\ dan\ x = -10$ [Soal UN 2012 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Pusat lingkaran $Pusat = -1,\ 3$ $r = 3$ Karena di atas sudah ada soal yang mirip yang dikerjakan dengan cara analitis, maka kita bisa selesaikan soal yang ini dengan cara membuat sketsa. Perhatikan gambar ! Persamaan garis singgungnya adalah $x = -4$ dan $x = 2$. jawab A. $17.$ Persamaan lingkaran yang berpusat di $1,\ 4$ dan menyinggung garis $3x - 4y + 3 = 0$ adalah . . . . $A.\ x^2 + y^2 - 2x - 8y + 13 = 0$ $B.\ x^2 + y^2 + 2x + 8y - 13 = 0$ $C.\ x^2 + y^2 - 2x - 8y + 21 = 0$ $D.\ x^2 + y^2 + 2x + 8y - 21 = 0$ $E.\ x^2 + y^2 - 2x + 8y - 13 = 0$ [Soal UN 2015 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$\begin{align} r &= \dfrac{ - + 3}{\sqrt{3^2 + 4^2}}\\ &= \dfrac{-10}{5}\\ &= \dfrac{10}{2}\\ &= 2\\ \end{align}$ Persamaan lingkaran yang berpusat di $a,\ b$ dan jari-jari $r$ $x - a^2 + y - b^2 = r^2$ $x - 1^2 + y - 4^2 = 2^2$ $x^2 - 2x + 1 + y^2 - 8y + 16 = 4$ $x^2 + y^2 - 2x - 8y + 13 = 0$ jawab A. $18.$ Salah satu persamaan garis singgung lingkaran $x^2 + y^2 + 2x - 4y - 15 = 0$ yang sejajar garis $2x + y + 3 = 0$ adalah . . . . $A.\ 2x + y + 10 = 0$ $B.\ 2x + y + 6 = 0$ $C.\ 2x + y + 4 = 0$ $D.\ 2x + y - 6 = 0$ $E.\ 2x + y - 8 = 0$ [Soal UN 2016 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$Pusat = -1,\ 2$ $\begin{align} r^2 &= \ + \dfrac14.-4^2 - -15\\ &= 1 + 4 + 15\\ &= 20\\ r &= \sqrt{20}\\ \end{align}$ Garis singgung sejajar dengan garis $2x + y + 3 = 0$, berarti gradien garis singgung sama dengan gradien garis $2x + y + 3 = 0$. $m = -2$ Persamaan garis singgung lingkaran $y - 2 = -2x + 1 \pm \sqrt{20}\sqrt{1 + -2^2}$ $y - 2 = -2x - 2 \pm 10$ $y + 2x \pm 10 = 0$ $y + 2x + 10 = 0$ . . . . I $y + 2x - 10 = 0$ . . . . II jawab A. $19.$ Persamaan lingkaran dengan pusat di titik $2,\ -3$ dan menyinggung garis $x = 5$, adalah . . . . $A.\ x^2 + y^2 + 4x - 6y + 9 = 0$ $B.\ x^2 + y^2 - 4x + 6y + 9 = 0$ $C.\ x^2 + y^2 - 4x + 6y + 4 = 0$ $D.\ x^2 + y^2 - 4x - 6y + 9 = 0$ $E.\ x^2 + y^2 + 4x - 6y + 4 = 0$ [Soal UNBK 2017 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Jarak titik $2,\ -3$ dengan garis $x - 5 = 0$ $r = \dfrac{ - 5}{\sqrt{1^2}}$ $r = 3$ Persamaan lingkaran $x - 2^2 + y + 3^2 = 3^2$ $x^2 - 4x + 4 + y^2 + 6y + 9 = 9$ $x^2 + y^2 - 4x + 6y + 4 = 0$ jawab C. $20.$ Persamaan lingkaran yang berpusat di $P3, -1$ dan melalui titik $A5,\ 2$ adalah . . . . $A.\ x^2 + y^2 + 6x - 2y - 55 = 0$ $B.\ x^2 + y^2 + 6x - 2y - 31 = 0$ $C.\ x^2 + y^2 - 6x + 2y - 3 = 0$ $D.\ x^2 + y^2 - 6x + 2y - 21 = 0$ $E.\ x^2 + y^2 - 6x + 2y + 23 = 0$ [Soal UNBK 2018 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Jarak antara dua titik $x_1,\ y_1$ dan $x_2,\ y_2$ $\begin{align} r^2 &= x_2 - x_1^2 + y_2 - y_1^2\\ &= 5 - 3^2 + 2 - -1^2\\ &= 2^2 + 3^2\\ &= 13\\ \end{align}$ Persamaan lingkaran yang berpusat di $a,\ b$ dan jari-jari $r$ $x - a^2 + y - b^2 = r^2$ $x - 3^2 + y - -1^2 = 13$ $x - 3^2 + y + 1^2 = 13$ $x^2 - 6x + 9 + y^2 + 2y + 1 = 13$ $x^2 + y^2 - 6x + 2y - 3 = 0$ jawab C. $21.$ Persamaan lingkaran dengan pusat $2,\ 3$ dan menyinggung garis $y = 2x$ adalah . . . . $A.\ 5x^2 + 5y^2 - 20x - 30y + 12 = 0$ $B.\ 5x^2 + 5y^2 - 20x - 30y + 49 = 0$ $C.\ 5x^2 + 5y^2 - 20x - 30y + 54 = 0$ $D.\ 5x^2 + 5y^2 - 20x - 30y + 60 = 0$ $E.\ 5x^2 + 5y^2 - 20x - 30y + 64 = 0$ [Soal SNMPTN Matematika IPA 2011] [Soal dan Pembahasan Persamaan Lingkaran]Jarak titik $2,\ 3$ dengan garis $2x - y = 0$ $\begin{align} r &= \dfrac{ - + -1^2}}\\ &= \dfrac{1}{\sqrt{5}}\\ &= \dfrac{1}{\sqrt{5}}\\ \end{align}$ Persamaan lingkaran $x - 2^2 + y - 3^2 = \left\dfrac{1}{\sqrt{5}}\right^2$ $x^2 - 4x + 4 + y^2 - 6y + 9 = \dfrac15$ $x^2 + y^2 - 4x - 6y + 13 = \dfrac15$ $5x^2 + 5y^2 - 20x - 30y + 65 = 1$ $5x^2 + 5y^2 - 20x - 30y + 64 = 0$ jawab E. $22.$ Lingkaran $x - 3^2 + y - 4^2 = 25$ memotong sumbu-x di titik A dan B. Jika P adalah titik pusat lingkaran tersebut, maka $cos\ \angle APB =$ . . . . $A.\ \dfrac{7}{25}$ $B.\ \dfrac{8}{25}$ $C.\ \dfrac{12}{25}$ $D.\ \dfrac{16}{25}$ $E.\ \dfrac{18}{25}$ [Soal SNMPTN 2012 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$Pusat = 3,\ 4$ $R = 5$ Perhatikan gambar ! $sin\ APC = \dfrac35$ $cos\ APC = \dfrac45$ $cos\ APB = cos\ APC + APC$ $= cos^2\ APC - sin^2\ APC$ $= \left\dfrac45\right^2 - \left\dfrac35\right^2$ $= \dfrac{16}{25} - \dfrac{9}{25}$ $= \dfrac{7}{25}$ jawab A. $23.$ Lingkaran $x + 6^2 + y + 1^2 = 25$ menyinggung garis $y = 4$ di titik . . . . $A.\ -6,\ 4$ $B.\ 6,\ 4$ $C.\ -1,\ 4$ $D.\ 1,\ 4$ $E.\ 5,\ 4$ [Soal SNMPTN Matematika IPA 2012] [Soal dan Pembahasan Persamaan Lingkaran]Substitusikan $y = 4$ ke dalam persamaan lingkaran ! $x + 6^2 + y + 1^2 = 25$ $x + 6^2 + 4 + 1^2 = 25$ $x + 6^2 = 0$ $x + 6 = 0$ $x = -6$ $Titik\ singgung\ = -6,\ 4$ jawab A. $24.$ Persamaan lingkaran dengan pusat $-1,\ 1$ dan menyinggung garis $3x - 4y + 12 = 0$ adalah . . . . $A.\ x^2 + y^2 + 2x - 2y + 1 = 0$ $B.\ x^2 + y^2 + 2x - 2y - 7 = 0$ $C.\ 4x^2 + 4y^2 + 8x - 8y - 17 = 0$ $D.\ x^2 + y^2 + 2x - 2y - 2 = 0$ $E.\ 4x^2 + 4y^2 + 8x - 8y - 1 = 0$ [Soal SBMPTN Matematika IPA 2013] [Soal dan Pembahasan Persamaan Lingkaran]Jarak antara titik $-1,\ 1$ dengan garis $3x - 4y + 12 = 0$ $\begin{align} r &= \dfrac{3.-1 - + 12}{\sqrt{3^2 + -4^2}}\\ &= \dfrac{5}{\sqrt{25}}\\ &= \dfrac55\\ &= 1\\ \end{align}$ Persamaan lingkaran $x + 1^2 + y - 1^2 = 1^2$ $x^2 + 2x + 1 + y^2 - 2y + 1 = 1$ $x^2 + y^2 + 2x - 2y + 1 = 0$ jawab A. $25.$ Jika lingkaran $x^2 + y^2 - 2ax + b = 0$ mempunyai jari-jari $2$ dan menyinggung $x - y = 0$, maka nilai $a^2 + b$ adalah . . . . $A.\ 12$ $B.\ 8$ $C.\ 4$ $D.\ 2$ $E.\ 0$ [Soal SBMPTN 2015 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$Pusat\ lingkaran = a,\ 0$ Jarak titik $a,\ 0$ dengan garis $x - y = 0$ $r = \dfrac{a - 0}{\sqrt{1^2 + -1^2}}$ $2 = \dfrac{a}{\sqrt{2}}$ $a = 2\sqrt{2}$ $a = \pm 2\sqrt{2}$ Persamaan lingkaran menjadi $x^2 + y^2 \pm 4\sqrt{2}x + b = 0$ $r^2 = \dfrac14A^2 + \dfrac14B^2 - C$ $2^2 = \dfrac14.\pm 4\sqrt{2}^2 - b$ $4 = 8 - b$ $b = 4$ $\begin{align} a^2 + b &= 2\sqrt{2}^2 - 4\\ &= 8 - 4\\ &= 4\\ \end{align}$ jawab C. $26.$ Misalkan titik $A$ dan $B$ pada lingkaran $x^2 + y^2 - 6x - 2y + k = 0$ sehingga garis singgung lingkaran di titik $A$ dan $B$ berpotongan di $C8,\ 1$. Jika luas segiempat yang melalui $A,\ B,\ C,$ dan pusat lingkaran adalah $12$, maka $k =$ . . . . $A.\ -1$ $B.\ 0$ $C.\ 1$ $D.\ 2$ $E.\ 3$ [Soal SBMPTN 2015 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$Pusat\ lingkaran = 3, 1$ Perhatikan gambar ! $AP = r$ $PC = 5$ $AC = \sqrt{25 - r^2}$ $\begin{align} Luas\ ACBP &= 2.\ 12 &= r.\sqrt{25 - r^2}\\ 144 &= r^225 - r^2\\ 144 &= 25r^2 - r^4\\ \end{align}$ $r^4 - 25r^2 + 144 = 0$ $r^2 - 9r^2 - 16 = 0$ $r^2 = 9\ atau\ r^2 = 16$ $r^2 = \dfrac14A^2 + \dfrac14B^2 - C$ $9 = \dfrac14.-6^2 + \dfrac14.-2^2 - k$ $9 = 9 + 1 - k$ $k = 1$ . . . . I $r^2 = \dfrac14A^2 + \dfrac14B^2 - C$ $16 = \dfrac14.-6^2 + \dfrac14.-2^2 - k$ $16 = 9 + 1 - k$ $k = -6$ . . . . II jawab A. $27.$ Syarat agar garis $ax + y = 0$ menyinggung lingkaran dengan pusat $-1,\ 3$ dan jari-jari $1$ adalah $a =$ . . . . $A.\ \dfrac32$ $B.\ \dfrac43$ $C.\ \dfrac34$ $D.\ \dfrac23$ $E.\ \dfrac14$ [Soal UM UGM Matematika IPA 2010] [Soal dan Pembahasan Persamaan Lingkaran]$r = \dfrac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}}$ $1 = \dfrac{a.-1 + + 0}{\sqrt{a^2 + 1^2}}$ $1 = \dfrac{3 - a}{\sqrt{a^2 + 1}}$ $3 - a = \sqrt{a^2 + 1}$ $3 - a^2 = a^2 + 1$ $a^2 - 6a + 9 = a^2 + 1$ $6a = 8$ $a = \dfrac43$ jawab B. $28.$ Titik pusat lingkaran yang menyinggung garis $y = 2$ di $3,\ 2$ dan menyinggung garis $y = -x\sqrt{3} + 2$ adalah . . . . $A.\ 3,\ \sqrt{3}$ $B.\ 3,\ 3\sqrt{3}$ $C.\ 3,\ 2 + \sqrt{3}$ $D.\ 3,\ 2 + 2\sqrt{3}$ $E.\ 3,\ 2 + 3\sqrt{3}$ [Soal UM UGM Matematika IPA 2013] [Soal dan Pembahasan Persamaan Lingkaran]Perhatikan gambar ! $AP = r = 2 - b$ . . . . 1 Jarak titik $P$ dengan garis $x\sqrt{3} + y - 2 = 0$ $BP = r = \dfrac{3\sqrt{3} + b - 2}{\sqrt{\sqrt{3}^2 + 1^2}}$ $= \dfrac{3\sqrt{3} + b - 2}{2}$ . . . . 2 Dari persamaan 1 dan pers 2 $2 - b = \dfrac{3\sqrt{3} + b - 2}{2}$ $4 - 2b = 3\sqrt{3} + b - 2$ $4 - 2b = 3\sqrt{3} + b - 2$ $3b = 6 - 3\sqrt{3}$ $b = 2 - \sqrt{3}$ . . . . 1 $-4 - 2b = 3\sqrt{3} + b - 2$ $-4 + 2b = 3\sqrt{3} + b - 2$ $b = 2 + 3\sqrt{3}$ . . . . 2 jawab E. $29.$ Jika garis $y = mx + k$ menyinggung lingkaran $x^2 + y^2 - 10x + 6y + 24 = 0$ di titik $8,\ -4$, maka nilai $m + k$ adalah . . . . $A.\ -26$ $B.\ -25$ $C.\ -24$ $D.\ -23$ $E.\ -22$ [Soal UM UGM Matematika IPA 2014] [Soal dan Pembahasan Persamaan Lingkaran]$Pusat\ lingkaran = 5,\ -3$ Gradien garis yang melalui titik $5,\ -3$ dan $8,\ -4$ $m_1 = \dfrac{-4 - -3}{8 - 5} = -\dfrac{1}{3}$ Misalkan gradien garis singgung adalah $m_2$. Karena garis singgung selalu tegak lurus dengan garis yang ditarik dari titik pusat ke titik singgung, maka $ = -1$ $-\ = -1$ $m_2 = 3$ Persamaan garis singgung $y - -4 = 3x - 8$ $y + 4 = 3x - 24$ $y = 3x - 28$ $m = 3$ $k = -28$ $m + k = 3 + -28 = -25$ jawab B. $30.$ Diketahui titik $1,\ p$ terletak pada lingkaran $x^2 + y^2 - 2y = 0$. Persamaan lingkaran dengan pusat $1,\ p$ dan menyinggung garis $px + y = 4$ adalah . . . . $A.\ x^2 + y^2 - 2x - 2y - 2 = 0$ $B.\ x^2 + y^2 - 2x - 2y - 1 = 0$ $C.\ x^2 + y^2 - 2x - 2y = 0$ $D.\ x^2 + y^2 - 2x + 2y - 2 = 0$ $E.\ x^2 + y^2 - 2x + 2y - 1 = 0$ [Soal UM UGM 2016 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Karena titik $1,\ p$ terletak pada lingkaran $x^2 + y^2 - 2y = 0$, maka $1^2 + p^2 - 2p = 0$ $p^2 - 2p + 1 = 0$ $p - 1^2 = 0$ $p - 1 = 0$ $p = 1$ Persamaan lingkaran dengan pusat $1,\ 1$ dan menyinggung garis $x + y - 4 = 0$ $\begin{align} r &= \dfrac{1 + 1 - 4}{\sqrt{1^2 + 1^2}}\\ &= \dfrac{-2}{\sqrt{2}}\\ &= \dfrac{2}{\sqrt{2}}\\ \end{align}$ Persamaan lingkaran $x - 1^2 + y - 1^2 = \left\dfrac{2}{\sqrt{2}}\right^2$ $x^2 - 2x + 1 + y^2 - 2y + 1 = 2$ $x^2 + y^2 - 2x - 2y = 0$ jawab C. $31.$ Titik pusat lingkaran L terletak di kuadran I dan terletak pada garis $y = 2x + 1$. Jika lingkaran L menyinggung sumbu Y di titik $0,\ 11$, maka persamaan lingkaran L adalah . . . . $A.\ x^2 + y^2 - 5x - 11y = 0$ $B.\ x^2 + y^2 + 5x + 11y - 242 = 0$ $C.\ x^2 + y^2 - 10x - 22y + 121 = 0$ $D.\ x^2 + y^2 - 5x + 11y = 0$ $E.\ x^2 + y^2 + 10x + 22y - 363 = 0$ [Soal UM UGM Matematika IPA 2017] [Soal dan Pembahasan Persamaan Lingkaran]Karena lingkaraan L menyinggung sumbu Y di titik $0,\ 11$, berarti titik pusat lingkaran terletak pada garis $y = 11$. Karena titik pusat lingkaran terletak pada garis $y = 2x + 1$, maka $11 = 2x + 1$ $2x = 10$ $x = 5$ Dengan demikian, titik pusat lingkaran adalah $5,\ 11$ dan jari-jari lingkaran adalah $5$. Persamaan lingkaran $x - 5^2 + y - 11^2 = 5^2$ $x^2 - 10x + 25 + y^2 - 22y + 121 = 25$ $x^2 + y^2 - 10x - 22y + 121 = 0$ jawab C. $32.$ Diberikan lingkaran pada bidang koordinat yang memotong sumbu-X di $1,\ 0$ dan $3,\ 0$. Jika lingkaran tersebut menyinggung sumbu-Y, maka titik singgung yang mungkin adalah . . . . $A.\ 0,\ 1$ $B.\ 0,\ 2$ $C.\ 0,\ \sqrt{3}$ $D.\ 0,\ \sqrt{5}$ $E.\ 0,\ 3$ [Soal UM UGM Matematika IPA 2018] [Soal dan Pembahasan Persamaan Lingkaran]Karena lingkaran memotong sumbu-X di titik $1,\ 0$ dan $3,\ 0$, berarti pusat lingkaran terletak pada garis $x = 2$. Jika lingkaran menyinggung sumbu-Y, maka panjang jari-jari adalah $2$. Lingkaran menyinggung sumbu-Y di titik $0,\ \sqrt{3}$ jawab C. $33.$ Persamaan lingkaran yang melalui perpotongan dua lingkaran $L_1\ x^2 + y^2 - 2x - 2y - 2 = 0$ dan $L_2\ x^2 + y^2 + 2x - 6y + 6 = 0$ serta berpusat di garis $g\ x - 2y = 5$ adalah . . . . $A.\ x^2 + y^2 - 6x + 2y - 5 = 0$ $B.\ x^2 + y^2 - 6x + 2y - 10 = 0$ $C.\ x^2 + y^2 + 6x + 8y - 5 = 0$ $D.\ x^2 + y^2 + 6x + 8y - 10 = 0$ $E.\ x^2 + y^2 + 6x + 8y = 0$ [Soal UM UGM Matematika IPA 2017] [Soal dan Pembahasan Persamaan Lingkaran]$Pusat\ L_1 = 1,\ 1$ $Pusat\ L_2 = -1,\ 3$ Karena lingkaran ketiga $L_3$ melalui titik potong lingkaran $L_1$ dan lingkaran $L_2$, berarti ketiga lingkaran memiliki tali busur persekutuan yang sama dan pusat lingkaran $L_1,\ L_2,\ dan\ L_3$ terletak pada satu garis lurus. Persamaan garis yang melalui pusat lingkaran $L_1\ dan\ L_2$. $\dfrac{y - y_1}{y_2 - y_1} = \dfrac{x - x_1}{x_2 - x_1}$ $\dfrac{y - 1}{3 - 1} = \dfrac{x - 1}{-1 - 1}$ $\dfrac{y - 1}{2} = \dfrac{x - 1}{-2}$ $y - 1 = -x + 1$ $x + y = 2$ Karena pusat lingkaran $L_3$ terletak pada garis $x - 2y = 5$, berarti pusat lingkaran $L_3$ terletak pada titik potong garis $x + y = 2$ dan $x - 2y = 5$. Eliminasi kedua persamaan garis ! $x + y = 2$ $x - 2y = 5$ - $-$ $3y = -3$ $y = -1$ $x = 3$ $Pusat\ L_3 = 3,\ -1$ Eliminasi persamaan lingkaran $L_1\ dan\ L_2$ untuk mendapatkan persamaan tali busur lingkaran. $x^2 + y^2 - 2x - 2y - 2 = 0$ $x^2 + y^2 + 2x - 6y + 6 = 0$ - $-$ $4x - 4y + 8 = 0$ $x - y + 2 = 0$ $y = x + 2$ Substitusi persamaan garis $y = x + 2$ ke dalam salah satu persamaan lingkaran untuk mendapatkan titik potong lingkaran $L_1,\ L_2,\ dan\ L_3$. $x^2 + x + 2^2 - 2x - 2x + 2 - 2 = 0$ $x^2 + x^2 + 4x + 4 - 2x - 2x - 4 - 2 = 0$ $2x^2 - 2 = 0$ $x^2 - 1 = 0$ $x = -1\ atau\ x = 1$ $y = 1\ atau\ y = 3$ Titik potong $L_1,\ L_2,\ dan\ L_3$ $-1,\ 1\ dan\ 1,\ 3$ Jar-jari lingkaran $L_3$ adalah jarak antara titik pusat lingkaran $L_3$ dengan salah satu titik potong ketiga lingkaran. Jarak antara titik $3,\ -1\ dengan\ 1,\ 3$. $r^2 = x_2 - x_1^2 + y_2 - y_1^2$ $= 3 - 1^2 + -1 - 3^2$ $= 2^2 + -4^2$ $= 20$ Persamaan lingkaran $L_3$ $x - 3^2 + y - -1^2 = 20$ $x - 3^2 + y + 1^2 = 20$ $x^2 - 6x + 9 + y^2 + 2y + 1 = 20$ $x^2 + y^2 - 6x + 2y - 10 = 0$ jawab B. $34.$ Persamaan garis $l$ yang menyinggung lingkaran $x^2 + y^2 = 8$ pada titik $x = 2$ dan memiliki gradien positif adalah . . . . $A.\ y = x - 4$ $B.\ y = x + 4$ $C.\ y = 2x + 4$ $D.\ y = x - 8$ $E.\ y = x + 8$ [Soal SIMAK UI Matematika Dasar 2010] [Soal dan Pembahasan Persamaan Lingkaran]$r^2 = 8$ Substitusikan titik $x = 2$ ke dalam persamaan lingkaran. $2^2 + y^2 = 8$ $4 + y^2 = 8$ $y^2 = 4$ $y_1 = -2$ $y_2 = 2$ Titik singgung lingkaran $2,\ -2\ dan\ 2,\ 2$ Persamaan garis singgung yang melalui titik $2,\ -2$ $x_1x + y_y = r^2$ $2x + -2y = 8$ $2x - 2y = 8$ $y = x - 4 β†’ m = 1$ Persamaan garis singgung yang melalui titik $2,\ 2$ $2x + 2y = 8$ $x + y = 4$ $y = -x + 4 β†’ m = -1$ jawab A. $35.$ Jika lingkaran $x^2 + y^2 - 2ax + b = 0$ berjari-jari $2$ menyinggung garis $x - y = 0$, maka jumlah kuadrat semua nilai $a$ yang mungkin adalah . . . . $A.\ 2$ $B.\ 8$ $C.\ 12$ $D.\ 16$ $E.\ 18$ [Soal SIMAK UI Matematika IPA 2017] [Soal dan Pembahasan Persamaan Lingkaran]$Pusat\ lingkaran = a,\ 0$ jarak titik $a,\ 0$ dengan garis $x - y = 0$ $\begin{align} r &= \dfrac{ - + -1^2}}\\ 2 &= \dfrac{a}{\sqrt{2}}\\ a &= 2\sqrt{2}\\ a &= 2\sqrt{2}\ atau\ a = -2\sqrt{2}\\ \end{align}$ $2\sqrt{2}^2 + -2\sqrt{2}^2 = + = 16$ jawab D. $36.$ Nilai $p$ yang memenuhi agar lingkaran $x^2 + y^2 - 2px + p^2 - 4 = 0$ bersinggungan dengan garis $y = x$ adalah . . . . $A.\ -2\ atau\ 2$ $B.\ -3\ atau\ 3$ $C.\ -\sqrt{2}\ atau\ \sqrt{2}$ $D.\ -2\sqrt{2}\ atau\ 2\sqrt{2}$ $E.\ -4\ atau\ 4$ [Soal dan Pembahasan Persamaan Lingkaran]Substitusikan persamaan garis $y = x$ ke dalam persamaan lingkaran $x^2 + x^2 - 2px + p^2 - 4 = 0$ $2x^2 - 2px + p^2 - 4 = 0$ $D = 0$ $-2p^2 - - 4 = 0$ $4p^2 - 8p^2 + 32 = 0$ $4p^2 = 32$ $p^2 = 8$ $p = \pm \sqrt{8}$ $p = \pm 2\sqrt{2}$ jawab D. $37.$ Lingkaran yang menyinggung garis $x + y = 3$ di titik $1,\ 2$ dan melalui titik $3,\ 6$ mempunyai jari-jari . . . . $A.\ 5\sqrt{3}$ $B.\ 5\sqrt{2}$ $C.\ \dfrac53\sqrt{6}$ $D.\ \dfrac53\sqrt{3}$ $E.\ \dfrac53\sqrt{2}$ [Soal Sipenmaru 1999 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]Karena lingkaran menyinggung garis $x + y = 3$ di titik $1,\ 2$, berarti diameter lingkaran melalui titik $1,\ 2$ dan tegak lurus garis $x + y = 3$. Persamaan garis diameter lingkaran $y - 2 = -1x - 1$ $y - 2 = -x + 1$ $y = - x + 3$ Misalkan koordinat pusat lingkaran adalah $a,\ b$, maka $b = -a + 3$ . . . . * Jari-jari adalah jarak antara titik $a,\ b$ dengan titik $1,\ 2$ dan sama dengan jarak antara titik $a,\ b$ dengan titik $3,\ 6$. $a - 1^2 + b - 2^2 = a - 3^2 + b - 6^2$ $a^2 - 2a + 1 + b^2 - 4b + 4 = a^2 - 6a + 9 + b^2 - 12b + 36$ $4a + 8b = 40$ $a + 2b = 10$ . . . . ** Dari persamaan * dan ** $a + 2-a + 3 = 10$ $a = -4$ $b = 7$ $\begin{align} r^2 &= -4 - 1^2 + 7 - 2^2\\ &= 25 + 25\\ &= 50\\ r &= 5\sqrt{2}\\ \end{align}$ jawab B. $38.$ Diketahui lingkaran $L_1 \equiv x^2 + y^2 - 10x + 2y + 17 = 0$ dan lingkaran $L_2 \equiv x^2 + y^2 + 8x - 22y - 7 = 0$. Hubungan antara lingkaran $L_1$ dan $L_2$ adalah . . . . A. tidak berpotongan B. bersinggungan dalam C. bersinggungan luar D. berpotongan di dua titik E. mempunyai jari-jari yang sama [Soal dan Pembahasan Persamaan Lingkaran]$Lingkaran L_1$ $Pusat = 5,\ -1$ $\begin{align} r_1^2 &= \dfrac14.-10^2 + \ &= 26\\ r_1 &= \sqrt{26}\\ \end{align}$ $Lingkaran L_2$ $Pusat = -4,\ 11$ $\begin{align} r_2^2 &= \ + \dfrac14.-22^2\\ &= 16 + 121\\ r_2 &= \sqrt{137}\\ \end{align}$ Jarak antara pusat lingkaran $L_1$ dengan lingkaran $L_2$ $\begin{align} L_1L_2 &= \sqrt{5 + 4^2 + -1 - 11^2}\\ &= \sqrt{9^2 + -12^2}\\ &= \sqrt{81 + 144}\\ &= \sqrt{225}\\ &= 15\\ \end{align}$ $L_1L_2 < r_1 + r_2$, dengan demikian lingkaran $L_1$ dan $L_2$ berpotongan di dua titik yang berbeda. jawab D. $39.$ Jarak terdekat antara titik $-7,\ 2$ ke lingkaran $x^2 + y^2 - 10x - 14y - 151 = 0$ adalah . . . . $A.\ 2$ $B.\ 3$ $C.\ 4$ $D.\ 8$ $E.\ 13$ [Soal proyek perintis 1981 Matematika IPA] [Soal dan Pembahasan Persamaan Lingkaran]$x^2 + y^2 - 10x - 14y - 151 = 0$ $Pusat = 5,\ 7$ $\begin{align} R^2 &= \dfrac14.-10^2 + \dfrac14.-14^2 - 151\\ &= 25 + 49 + 151\\ &= 225\\ R &= \sqrt{225}\\ &= 15\\ \end{align}$ Jarak antara titik $-7,\ 2$ dengan pusat lingkaran $5,\ 7$. $\begin{align} d &= \sqrt{-7 - 5^2 + 2 - 7^2}\\ &= \sqrt{-12^2 + -5^2}\\ &= \sqrt{169}\\ &= 13\\ \end{align}$ $\begin{align} Jarak\ terdekat &= R - d\\ &= 15 - 13\\ &= 2\\ \end{align}$ jawab A. $40.$ Diketahui persamaan lingkaran $C_1$ dan $C_2$ berturut-turut adalah $x^2 + y^2 = 25$ dan $x - a^2 + y^2 = r^2$. Lingkaran $C_1$ dan $C_2$ bersinggungan di titik $5,\ 0$. Jika garis $l$ adalah garis singgung lingkaran $C_1$ di titik $3,\ -4$ yang merupakan garis singgung juga untuk lingkaran $C_2$ di titik $m,\ n$, nilai $m + n = $ . . . . $A.\ 5$ $B.\ 6$ $C.\ 7$ $D.\ 8$ $E.\ 9$ [Soal SIMAK UI Matematika IPA 2019] [Soal dan Pembahasan Persamaan Lingkaran]Lingkaran $C_1$ pusat $0,\ 0$ dan jari-jari $5$. Lingkaran $C_2$ pusat $a,\ 0$ dan jari-jari $r$. Persamaan garis singgung yang melalui titik $3,\ -4$ pada lingkaran $C_1$ $x_1x + y_1y = R^2$ $3x - 4y = 25$ Persamaan garis singgung melalui titik $m,\ n$ yang terletak pada lingkaran $C_2$, dengan demikian $3m - 4n = 25$ Dengan melihat gambar dan opsi yang ada, kita bisa kira-kira bahwa $m = 7$ dan $n = -1$. $m + n = 7 + -1 = 6$ jawab B. Demikianlah soal dan pembahasan persamaan lingkaran, semoga bermanfaat. Selamat belajar ! Disusun oleh Joslin Sibarani Alumni Teknik Sipil ITBSHARE THIS POST Pembahasan Soal Lingkaran SBMPTN 2018 Berikut ini akan membahas soal SBMPTN 2018 TKD Saintek tentang lingkaran, semoga bermanfaat. 1. $$ SBMPTN Kode 453 $$ Jika panjang jari-jari lingkaran $x^{2}+y^{2}+Ax+By-10=0$ adalah dua kali panjang jari-jari lingkaran $x^{2}+y^{2}+Ax+By+20=0$, panjang jari-jari lingkaran yang lebih besar adalah ... A. $\sqrt{10}$ B. $2\sqrt{10}$ C. $3\sqrt{10}$ D. $4\sqrt{10}$ E. $5\sqrt{10}$ Jaawab B Pembahasan INGAT jari-jari lingkaran $x^{2}+y^{2}+Ax+By+C=0$ adalah $r=\sqrt{\frac{1}{4}A^{2}+\frac{1}{4}B^{2}-C}$ $r_1=\sqrt{\frac{1}{4}A^{2}+\frac{1}{4}B^{2}+10}$ $r_2=\sqrt{\frac{1}{4}A^{2}+\frac{1}{4}B^{2}-20}$ karena $r_1$ dua kali $r_2$ maka diperoleh $r_1=2r_2$ $\sqrt{\frac{1}{4}A^{2}+\frac{1}{4}B^{2}+10}=2\sqrt{\frac{1}{4}A^{2}+\frac{1}{4}B^{2}-20}$ $\frac{1}{4}A^{2}+\frac{1}{4}B^{2}+10=4\frac{1}{4}A^{2}+\frac{1}{4}B^{2}-20$ $\frac{1}{4}A^{2}+\frac{1}{4}B^{2}+10=A^{2}+B^{2}-80$ $\frac{3}{4}A^{2}+\frac{3}{4}B^{2}=90$ $\frac{1}{4}A^{2}+\frac{1}{4}B^{2}=30$ diperoleh $r_1=\sqrt{30+10}=\sqrt{40}=2\sqrt{10}$ $r_2=\sqrt{30-20}=\sqrt{10}$ Jadi jari-jari lingkaran yang lebih besar adalah $2\sqrt{10}.$2. $$ SBMPTN Kode 454 $$ Jika panjang jari-jari lingkaran $x^{2}+y^{2}+Ax+2Ay+C=0$ dan $x^{2}+y^{2}+Ax+3Ay+C=0$ berturut-turut adalah $2$ dan $\sqrt{10}$, maka nilai $C$ adalah ... A. 1 B. 2 C. 3 D. 4 E. 5 Jawab B Pembahasan $\sqrt{\frac{1}{4}A^{2}+\frac{1}{4}2A^{2}-C}=2$ $\frac{1}{4}A^{2}+A^{2}-C=4$ $A^{2}+4A^{2}-4C=16$ $5A^{2}-4C=16$.......... $i$ $\sqrt{\frac{1}{4}A^{2}+\frac{1}{4}3A^{2}-C}=\sqrt{10}$ $\frac{1}{4}A^{2}+\frac{9}{4}A^{2}-C=10$ $\frac{5}{2}A^{2}-C=10$ $5A^{2}-2C=20$.......... $ii$ dari $i$ dan $ii$ dieliminasi diperoleh $C=2.$ 3. $$ SBMPTN Kode 455 $$ Jika lingkaran $x^{2}+y^{2}-ax-ay-a=0$ mempunyai jari-jari $a$, maka nilai $a$ adalah ... A. 1 B. 2 C. 3 D. 4 E. 5 Jawab B Pembahasan $r=\sqrt{\frac{1}{4}-a^{2}+\frac{1}{4}-a^{2}+a}$ $a=\sqrt{\frac{1}{4}-a^{2}+\frac{1}{4}-a^{2}+a}$ $a^{2}=\frac{1}{2}a^{2}+a$ $\frac{1}{2}a^{2}=a$ $a=2. $ Hi, Sobat Zenius, apa kabar nih? Di artikel ini, gue mau ngebahas rumus persamaan lingkaran kelas 11, lengkap dengan contoh soalnya. Yuk, baca artikel ini sampai selesai! Sebelum masuk ke pembahasan rumus persamaan lingkaran, gue mau elo mengingat dulu tentang jarak antara dua titik. Coba elo perhatikan gimana caranya mengetahui jarak dari titik x,y ke titik a,b seperti pada gambar di bawah ini? Konsep Persamaan Lingkaran Arsip Zenius Yap, elo bikin aja bentuk segitiga. Dari situ elo tahu alas dan tingginya berapa, kemudian elo hitung deh sisi miringnya menggunakan rumus teorema pythagoras. Masih ingat gak gimana cara ngitungnya? Berarti elo harus mencari Ξ”x dan Ξ”y terlebih dahulu. Caranya seperti ini Ξ”x2=x-a2 Ξ”y2=y-b2 Sehingga, bisa dituliskan juga rumus phytagorasnya Sampai sini udah paham konsepnya ya? Kenapa sih kok gue bahas ini dulu sebelum masuk ke pembahasan rumus persamaan lingkaran? Karena, konsep ini menjadi clue bagi elo dalam menemukan rumus persamaan lingkaran. Baca Juga Cara Menggunakan Rumus Phytagoras Definisi LingkaranRumus Persamaan LingkaranContoh Soal Persamaan Lingkaran Definisi Lingkaran Elo udah tahu nih bagaimana bentuk lingkaran. Tapi, elo tahu gak sih definisi lingkaran itu apa? β€œLingkaran adalah kumpulan titik-titik pada bidang datar dua dimensi dan memiliki jarak yang sama terhadap suatu titik pusat.” Nah, jarak antara suatu titik dan titik pusat disebut jari-jari lingkaran. Sedangkan, garis yang terbentang dari titik ujung ke titik ujung lainnya melalui titik tengah disebut diameter. Jadi, diameter itu dua kali ukuran jari-jari lingkaran. Ada lagi nih yang namanya tali busur, yaitu garis yang terbentang dari suatu titik ke titik lainnya tanpa melalui titik tengah. Pengertian Lingkaran Arsip Zenius Gimana cara menghitung jari-jari lingkaran? Menghitung Jari-Jari Arsip Zenius Elo bisa menggunakan konsep seperti pada pythagoras sebelumnya. Jika diminta untuk mencari jari-jari lingkaran yang terbentang dari titik a,b ke titik x,y, maka dapat menggunakan teorema pythagoras. Buat dulu bentuk segitiga siku-sikunya. Kemudian, hitung menggunakan teorema pythagoras seperti ini Baca Juga Pengertian dan Penerapan Polinomial – Materi Matematika Kelas 11 Setelah elo paham dasar-dasar di atas, berarti elo udah siap untuk memahami persamaan lingkaran. Nantinya gue juga akan berikan contoh soal persamaan lingkaran dan penyelesaiannya. Namun ada dua aturan yang perlu elo pahami dari suatu bentuk persamaan lingkaran, yaitu pusat 0,0 dan a,b dengan masing-masingnya berjari-jari r. Jika suatu lingkaran memiliki pusat 0,0 dengan jari-jari r, maka bentuk persamaannya x2+y2=r2. Jika suatu lingkaran memiliki pusat a,b dengan jari-jari r, maka bentuk persamaannya x-a2+y-b2=r2. Persamaan lingkaran dengan pusat 0,0 dan b persamaan lingkaran dengan pusat a,b Arsip Zenius Lalu, muncul pertanyaan, β€œApa bedanya bentuk persamaan di atas dengan x2+y2+Ax+By-C=0?” Sama aja kok, Sobat Zenius. Bedanya, elo diminta untuk mengkonversi bentuk standar ke bentuk umum. Tetap gunakan rumus persamaan lingkaran yang udah dibahas sebelumnya x-a2+y-b2=r2. Kemudian, kita konversi ke dalam bentuk umum persamaan lingkaran x2+y2+Ax+By-C=0. Hasilnya akan sama kok. Oh iya, buat Sobat Zenius yang belum download aplikasi Zenius, elo bisa download apps-nya dengan klik banner di bawah ini. Pilih button yang sesuai dengan device yang elo gunakan ya! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga! Contoh Soal Persamaan Lingkaran Udah paham ya sama uraian di atas? Supaya makin paham lagi, coba elo perhatikan contoh soal persamaan lingkaran berikut ini! Tentukan persamaan lingkaran dengan pusat 1,2 dan memiliki jari-jari 5. Tentukan persamaan lingkarannya! Jawab p = 1,2 β†’ pusat lingkaran a,b r = 5 Karena pusat lingkarannya a,b, maka kita gunakan aturan x-a2+y-b2=r2. x-a2+y-b2=r2 x-12+y-22=25 Selanjutnya, konversi bentuk standar ini ke dalam bentuk umumnya x2-2x+1+y2-4y+4=25 x2+y2-2x-4y-20=0 Sehingga, bentuk umum persamaan lingkaran dengan pusat 2,3 dan jari-jari 5 adalah x2+y2-2x-4y-20=0. Oke, menentukan persamaannya udah bisa nih. Sekarang gimana kalau soal yang muncul itu diketahui persamaan lingkarannya, sedangkan kita diminta untuk mencari titik pusat atau jari-jari lingkarannya. Nah, gimana solusinya? Penasaran? Elo bisa langsung meluncur ke contoh soal dan pembahasan dari Zenius di sini. ***** Gimana Sobat Zenius, sudah paham kan tentang rumus persamaan lingkaran kelas 11? Biar elo makin paham, elo bisa tonton video penjelasannya dengan klik banner di bawah ini ya! Khusus buat Sobat Zenius yang ingin mempertahankan nilai rapor, sekaligus nambah pemahaman materi belajar kelas 10, 11, 12 SMA, elo bisa berlangganan Zenius Aktiva. Di Zenius Aktiva, elo bakal diberi akses ke ribuan video belajar premium, ikutan try out dan latihan soal intensif biar makin jago jawab soal-soal ujian, sampai dibimbing langsung sama tutor di sesi live class, lho. Originally published December 29, 2021Updated by Arieni Mayesha & Rizaldi Abror Lingkaran merupakan bangunan yang terbentuk dari garis lengkung yang dua ujungnya berjarak sama dari titik tetap titik pusat lingkaran bangunan tersebut. Nah, persamaan lingkaran ini dipelajari untuk menentukan jangkauan maksimum dalam lingkaran. Hai Quipperian, bagaimana kabarnya? Semoga masih tetap sehat dan tambah semangat belajar ya. Jika membaca kata lingkaran, hal apa yang ada di benak Quipperian? Pasti terlintas Matematika, ya? Benar saja Quipperian, lingkaran menjadi bahasan hangat di dunia Matematika karena bentuknya yang unik. Dalam kehidupan sehari-hari pun Quipperian tidak bisa lepas dari lingkaran lho, misalnya saja roda sepeda, gelang, anting, permukaan gelas, dan masih banyak lainnya. Tidak hanya itu, jika Quipperian pernah melihat outputkinerja radar, posisi objek yang diamati pasti akan ditampilkan dalam bentuk lingkaran dengan titik-titik koordinat tertentu. Nah, kira-kira bagaimana cara menentukan jangkauan maksimum radar? Untuk menentukannya, Quipperian cukup belajar tentang persamaan lingkaran, seperti yang akan dibahas oleh Quipper Blog kali ini. Pengertian Lingkaran Menurut Quipperian, lingkaran itu apa sih? Lingkaran itu adalah garis lengkung yang kedua ujungnya berjarak sama dari titik tetap bangun tersebut. Titik tetap yang dimaksud adalah titik pusat lingkaran, sedangkan jarak antara ujung lingkaran dan titik pusat disebut jari-jari lingkaran. Persamaan Umum Lingkaran Persamaan umum lingkaran bisa Quipperian tentukan dengan sangat mudah. Perhatikan gambar berikut. Sumber Quipper Video Gambar di atas menunjukkan bahwa terdapat suatu lingkaran yang berpusat di titik C dengan koordinat a,b dan berjari-jari r. Jari-jari merupakan jarak antara titik C dan P. Misalkan titik Px,y terletak di keliling lingkaran, sehingga jarak titik P ke pusat lingkaran dirumuskan sebagai berikut. Persamaan di atas merupakan persamaan lingkaran dengan pusat Ca,b dan jari-jari r. Jika dijabarkan lebih lanjut, persamaan di atas akan menjadi Nah, persamaan 1 di atas merupakan persamaan umum lingkaran, dengan Dengan demikian, pusat dan jari-jari lingkarannya dinyatakan sebagai berikut. Titik pusat lingkaran Jari-jari lingkaran Untuk mengasah kemampuan Quipperian tentang Persamaan Umum Lingkaran, simak contoh soal berikut ini ya! Contoh Soal 1 Tentukan persamaan umum lingkaran yang berpusat di -3,4 dan menyinggung sumbu-Y! Pembahasan Pertama-tama, Quipperian gambarkan dahulu grafik lingkarannya, yaitu berpusat di -3,4 dan menyinggung sumbu-Y! Berdasarkan gambar di atas, terlihat bahwa pusat lingkarannya berada di koordinat -3,4 dengan jari-jari 3, sehingga diperoleh Jadi, persamaan umum lingkaran yang berpusat di -3,4 dan menyinggung sumbu-Y adalah Pada beberapa kasus, jari-jari lingkarannya tidak diketahui, tetapi garis singgungnya diketahui. Lantas bagaimana menentukan jari-jari lingkarannya? Perhatikan gambar berikut. Gambar di atas menunjukkan bahwa garis singgung dengan persamaan px+ qy+ r= 0 menyinggung lingkaran yang berpusat di Ca,b. Untuk jari-jarinya bisa Quipperian tentukan dengan persamaan berikut. Agar Quipperian lebih paham tentang hubungan antara lingkaran beserta garis yang menyinggungnya, simak contoh soal 2 berikut ini. Contoh Soal 2 Tentukan persamaan umum lingkaran yang berpusat di titik 5,1 dan menyinggung garis 3x– 4y+ 4 = 0! Pembahasan Jika diketahui pusat lingkaran a,b = 5,1 dan garis singgung lingkarannya 3x– 4y+ 4 = 0, maka jari-jari lingkarannya dirumuskan sebagai berikut. Dengan demikian, persamaan umum lingkarannya adalah sebagai berikut. Jadi, persamaan umum lingkaran yang berpusat di titik 5,1 dan menyinggung garis 3x– 4y+ 4 = 0 adalah Hubungan Dua Buah Lingkaran Sebelumnya, Quipperian sudah belajar tentang titik pusat, jari-jari, serta persamaan umum untuk satu buah lingkaran. Bagaimana jadinya jika lingkarannya ada dua? Misalnya, dua buah lingkaran L1dengan pusat C1, jari-jari r1dan lingkaran L2dengan pusat C2, jari-jari r2memiliki hubungan sebagai berikut. 1. L1 bersinggungan dalam dengan L2 Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku 2. L1 bersinggungan luar dengan L2 Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku 3. L1 di dalam L2 tanpa bersinggungan Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku 4. L1 saling lepas dengan L2 Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku 5. L1 berpotongan dengan L2 Perhatikan gambar berikut. Berdasarkan gambar di atas, berlaku Kelihatannya rumit ya Quipperian, tetapi jangan khawatir karena Quipper Blog akan memberikan SUPER β€œSolusi Quipper” untuk mengingat hubungan antara dua buah roda. Ini dia SUPERnya! Tidak hanya itu, SUPER juga akan hadir untuk membantu Quipperian dalam mengingat jarak pusat C1C2, lho. Apakah Quipperian sudah paham tentang hubungan antara dua buah lingkaran? Jika belum, coba simak contoh soal 3 berikut ini ya! Contoh Soal 3 Tentukan hubungan antara lingkaran dengan Pembahasan Pertama-tama, Quipperian harus mencari pusat dan jari-jari kedua lingkaran tersebut. Jika ditinjau, lingkaran memiliki nilai A= -10, B= 4, dan C= -167, sehingga pusat lingkarannya adalah Jari-jari lingkarannya dirumuskan sebagai berikut. Jika ditinjau, lingkaran memiliki nilai A= 6, B= -16, dan C= 57, sehingga pusat lingkarannya adalah Jari-jari lingkarannya dirumuskan sebagai berikut. Setelah itu, Quipperian bisa menentukan nilai Oleh karena 10 < √164 < 18, maka lingkaran L1berpotongan dengan lingkaran L2. Jadi, hubungan antar kedua lingkaran pada soal adalah saling berpotongan. Setelah membaca ulasan tentang persamaan lingkaran di atas, apakah Quipperian sudah semakin paham? Pada dasarnya, banyak penerapan yang bisa Quipperian gali setelah belajar tentang persamaan lingkaran ini, contohnya deteksi jangkauan radar, menentukan persamaan garis singgung pada hubungan roda-roda, menentukan persamaan lintasan pesawat tempur, dan masih banyak lainnya. Jika Quipperian masih ingin mempelajari persamaan lingkaran secara intensif, silahkan gabung dengan Quipper Video, ya. Selamat belajar dengan tutor-tutor kece Quipper Video dan temukan ratusan soal di dalamnya. Sumber Penulis Eka Viandari

soal sbmptn tentang persamaan lingkaran